Orange clownfish

Orange Clownfish
Scientific classification
Kingdom: Animalia
Phylum: Chordata
Class: Actinopterygii
Order: Perciformes
Family: Pomacentridae
Genus: Amphiprion
Species: A. percula
Binomial name
Amphiprion percula
(Lacepède, 1802)

The Orange Clownfish (Amphiprion percula) is widely known as a popular aquarium fish. Like other clownfish (also called anemonefish), it often lives in association with sea anemones. A. percula is associated specifically with Heteractis magnifica and Stichodactyla gigantea, and as larva use chemical cues released from the anemones to identify and locate the appropriate host species to use them for shelter and protection.[1] This causes preferential selection when finding their anemone host species.[2] Although popular, maintaining this species in captivity is rather complex. The Great Barrier Reef Marine Park Authority regulates the number of collection permits that are issued to aquarium fish dealers who seek this, and other tropical fish within the Great Barrier Reef Marine Park. The symbiosis between anemonefish and anemones depends on the presence of the fish drawing other fish to the anemone, where they are stung by its venomous tentacles. The anemone helps the fish by giving it protection from predators, which include brittle stars, wrasses, and other damselfish, and the fish helps the anemone by feeding it, increasing oxygenation, and removing waste material from the host. Various hypotheses exist about the fish's ability to live within the anemone without being harmed. One study carried out at Marineland of the Pacific by Dr. Demorest Davenport and Dr. Kenneth Noris in 1958 revealed that the mucus secreted by the anemone fish prevented the anemone from discharging its lethal stinging nematocysts. A second hypothesis is that A. percula has acquired immunity towards the sea anemone’s toxins, and it has been shown experimentally to be a combination of the two.[3] The fish feeds on algae, zooplankton, worms, and small crustaceans.

Contents

Description

The Amphiron percula can grow to be 11cm in length, but is on average 8cm, and can be recognized by three white lines across their bright orange bodies, with no distinction in color between sexes. The anterior white bar is placed just behind the eye; the middle bar goes straight down the middle of the fish; and the posterior bar occurs near the caudal fin. An anterior projecting bulge also exists on the middle bar. In addition to the white coloring, black edging outlines each fin with varying thickness.[2] This species can be mistaken for the similar species of clownfishes, A. ocellaris. This is known as the Ocellaris clownfish and sometimes referred to as the "false percula clownfish" or "common clownfish" due to its similar color and pattern. The "easiest" way to distinguish the two species is the fact that A. percula has 10 spines in the first dorsal fin and A. ocellaris has 11, which is a more reliable distinction than color patterns. The A. ocellaris does not have thick black edging outlining the fins.[2]

Reproduction

Since these fish live in a warm water environment they can reproduce all year long. Each group of fish consists of a breeding pair and 0–4 non-breeders. Within each group there is a size-based hierarchy: the female is largest, the breeding male is second largest, and the male non-breeders get progressively smaller as the hierarchy descends.[4] They exhibit protandry, meaning each fish is born male, but will only change to female if the sole breeding female dies. If the female dies, the breeding male changes sex, becomes the breeding female and the largest non-breeder becomes the breeding male. The spawning process is correlated with the lunar cycle. At night time the moon maintains a higher level of alertness in the A. percula and this increases the interaction with the males and females. Before spawning, the male attracts the female via courting behaviour. These courting actions include extending their fins, biting the female and chasing her. The males also swim rapidly in an upward and downward motion to attract the females. The nest site is also important for the survival of the eggs.[2] Depending on the size of the female spawn about 400–1500 eggs per cycle.[5] The expected tenure of breeding females is approximately 12 years and is relatively long for a fish of its size, but is characteristic of other reef fish.[6]

It has been unclear why the non-breeders continue to associate with these groups. Unlike non-reproductives in some animal groups, they cannot obtain occasional breeding opportunities, because their gonads are non-functional. They cannot be regarded as helpers at the nest, since it has been found their presence does not increase the reproductive success of the breeders. Recent research (Buston, 2004) suggests that they are simply queuing for the territory occupied by the breeders, i.e. the anemone; non-breeders living in association with breeders have a better chance of eventually securing a territory than a non-resident.[4] The probability of a fish ascending in rank in this queue is equal to that of the individual outliving at least one of its dominants because an individual will ascend in rank if any one of its dominants dies, and not simply when its immediate dominant dies.[4]

The development of the fish from juvenile to adult is dependent on the system of hierarchy, and can be described as density-dependent. There is aggression involved in these small families although usually not between the male and the females. The aggression usually exists between the males. The largest male will suppress the development of the next smallest male and the cycle continues until the smallest fish is evicted from the host anemone. Within each anemone, the regulation of the species is controlled by the female, since the amount of space for fish in her anemone is directly proportional to her size (which eventually reaches a maximum), so she ultimately controls the size of the other fish.[7] Amphiprion percula are very competitive fish and this causes the smaller fish to have a stunted growth. There is the potential for a fish to ascend in rank by contesting its dominant. This depends on the relative body sizes of the two fish, and is very unlikely to happen since A. Percula maintain well-defined size differences between adjacent individuals in rank.[4] However in an aquarium, this fish is peaceful, and it can live in an aquarium environment well.

The fish lay their eggs in a safe spot close to the anemone from where they are easily protected, and the parents can retreat to the safety of the anemone if danger threatens. Anemonefish usually lay their nests in the evening after a few days of carefully cleaning and examining the chosen site. Preferred egg sites are flat or slightly curved rocks or some other item the fish have dragged near their nest for the purpose. (In captivity, clay pots and saucers are an attractive choice.) First the female deposits some eggs with her ovipositor (a whitish tube descending from her belly), making a wiggling pass over the surface, then the male follows behind her fertilizing the eggs. After many passes, the nest is complete and will hatch in 6–8 days shortly after sunset, usually on a very dark night. In the meantime, the male is very protective of the nest and ceaselessly fans the eggs to provide proper oxygen circulation, and checks them for any bad eggs, which he eats before they can rot and damage more eggs. Females may or may not help the male tend the nest. At hatching, the larvae burst free and swim up toward the moonlight and the open ocean to ride the currents and eat plankton for about a week, before the still tiny metamorphosed clowns return to the reef and look for an anemone to settle into. Eventually the cycle repeats.

Recruitment

Recruitment is the number of individuals in a given species that can survive within a certain amount of time following larval habitation.[8] The higher the level of recruitment, the better chance a larva has of surviving long enough to become an actual fish. Large food supplies, low predator threats, and the availability of nearby anemonefish are all factors that affect recruitment levels of Amphirion Percula. Amphiprion Percula, like most coral reef fish, have a bipartite life cycle. This life cycle has a scattering pelagic larval stage whereas its resident phase is motionless. At the end of the A. Percula’s pelagic phase, the larvae begin to settle on the coral reef and begin their recruiting process in the resident population.[4] Larvae that settle successfully and join a resident population are called recruits. Anemonefish species are recruited to areas where the fish are commonly found. Most anemonefish are site-attached and do not move from one anemone to another that are spatially distributed more than a few meters. This is simply because it is always a dangerous undertaking for A. Percula to be outside their anemonefish safe haven, exposed to dangerous predators. They are also very poor swimmers, increasing the risk involved in travel.[4] Recruitment is essentially the only method that the fish can use to inhabit new anemones. Finding a better living situation in a different anemone is unlikely because every anemone is already occupied by other anemonefish species. Anemonefish are known for reproducing all year round when they are in lower latitudes and it is anticipated that recruitment with these fish would follow the same pattern.[8]

Habitat

Anemonefish are specialized coral reef fish that live within host anemones and are found in warmer waters in the Pacific Ocean, Indian Ocean, off northwest Australia, southeast Asia and Japan. Both the A. percula and the anemones reside in shallow waters and the depth usually does not exceed twelve meters with water temperatures ranging between 25–28 degrees C.[2] Host anemones, which are tube-like organisms that reside on coral reefs, are usually occupied by only one anemonefish species because one species will out-compete and exclude other species when they inhabit the same host anemone. Unless there was a significant size difference, two anemonefish species will show aggression towards each other when trying to occupy the same host anemone.[8] This is why the supply of nearby anemone hosts so strongly influences A. Percula’s ability to achieve recruitment and survival in general. A primary host anemone is where an anemonefish is found at a high frequency and a secondary host anemone is where an anemonefish is found at a relatively low frequency. The distribution and availability of sea anemones is limited by the activity of photosynthesis of algae that occupy the anemones’ tentacles.[2] Secondary hosts are usually only used if there is a severe lack of available primary hosts. When many different species of anemonefishes occupy similar habitats, they tend to spread themselves out according to smaller microhabitats and available species of anemones. The A. Percula and A. Perideraion both essentially live within the H. Magnifica anemone but the A. Percula has the highest selection ratios with the S. Gigantea.[8] A study done by Elliot & Mariscal in the region of Madang, Papua New Guinea found that all of the H. Magnifica anemones that were censused were occupied by the A. Percula and A. Perideraion. The A. Percula generally occupies anemones that are near shore while the A. Perideraion occupies anemones that are more offshore. Anemonefish will not occupy anemones if they are in shallow water or if they are too small. This is because shallow waters give an inhabitable environment for the A. Percula because of the lower salinity levels, increased temperatures and they would be exposed during low tides. Also, small anemones would not provide protection from predators.[8] The A. Percula and the host anemone are very important to one another and interact in a symbiotic relationship. The A. Percula cleans the host anemone by consuming algae residue and zooplankton such as copepods and larval tunicates. They also protect the anemone from polyp consuming fish and other predators, while the clown fish is protected from predators by the anemone. The A. Percula will sometimes carry pieces of food to the host anemone for later consumption. In most cases the host anemone then devours the food that the A. Percula stored around it.[2] Chances of survival for both parties involved are increased through this co-existence.

Development

The development of the A. Percula happens relatively fast. After the eggs are fertilized, they are ready to hatch after about six to seven days. After hatching, the larval are very small and are transparent except for the eyes, yolk sac, and a few colors across the body. The larva then sinks to the benthic environment but then swims to the upper water column. The larva spends about a week floating among plankton and is transported by ocean currents.[2] The larval stage ends when the A. Percula settles to the bottom of the ocean. The process from larval stages to juvenile takes approximately one day. There is a rapid development of color during the A. Percula's juvenile stage. During the juvenile stage the anemonefish has to find a suitable anemone host. Specific chemical components are used when finding their host. These chemical cues are different for each anemonefish. This causes preferential selection when finding their anemone host species.[2] When the A. Percula comes in contact with the anemone it produces a protective mucous coat. This mucous coat is developed with multiple interactions with the host anemone. The A. Perculas dances around the anemone, touching its fins first to the tentacles and then its entire body during its first interaction with the anemone. This process could take a few minutes or up to several hours.[2] If the A. Percula does not continue to come in contact with the host anemone the protective mucous covering may disappear. The A. Percula belongs to a group of fishes that are not stung by the nematocysts of the anemone. If the A. Percula did not have the protective mucous covering then they would be stung by the anemone. Other fish species that do not have the mucous covering are consumed by the anemone.[2]

External links

References

  1. ^ Elliot JK, Elliot JM, Mariscal RN (1995). "Host selection, location, and association behaviors of anemonefishes in field settlement experiments". Marine Biology 122 (3): 377–389. doi:10.1007/BF00350870. 
  2. ^ a b c d e f g h i j k Lee, J. 2003. "Amphiprion percula"(Online).
  3. ^ Mebs D (1994). "Anemonefish Symbiosis: Vulnerability and Resistance of Fish to the Toxin of the Sea Anemone". Toxicon 32 (9): 1059–1068. doi:10.1016/0041-0101(94)90390-5. PMID 7801342. 
  4. ^ a b c d e f Buston PM (May 2004). "Territory inheritance in clownfish". Proc. Biol. Sci. 271 (Suppl 4): S252–4. doi:10.1098/rsbl.2003.0156. PMC 1810038. PMID 15252999. http://rspb.royalsocietypublishing.org/cgi/pmidlookup?view=long&pmid=15252999. 
  5. ^ Alava, Veronica R., Gomes, Luiz. (July 1989). "Breeding Marine Aquarium Animals: The Anemonefish. Naga". The ICLARM Quarterly: 12–13. 
  6. ^ Buston P (2004). "Does the presence of non-breeders enhance the fitness of breeders? An experimental analysis in the clown anemonefish Amphiprion percula". Behavioral Ecology and Sociobiology 57: 23–31. doi:10.1007/s00265-004-0833-2. 
  7. ^ Fautin, Daphne G. (1992). "Anemonefish Recruitment: The Roles of Order and Chance". Symbiosis 14: 143–160. 
  8. ^ a b c d e Elliott JK, Mariscal RN (2001). "Coexistance of nine anemonefish species: differential host and habitat utilization, size and recruitment". Marine Biology 138: 23–36. doi:10.1007/s002270000441.